A backward error for the inverse singular value problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملA Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions
This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...
متن کاملInverse problem for a singular differential operator
In this paper, we give the solution of the inverse Sturm–Liouville problem on two partially coinciding spectra. In particular, in this case we obtain Hochstadt's theorem concerning the structure of the difference q(x) − ˜ q(x) for the singular Sturm Liouville problem defined on the finite interval (0, π) having the singularity type 1 4 sin 2 x at the points 0 and π.
متن کاملParallelization of a Method for the Solution of the Inverse Additive Singular Value Problem
This paper describes the parallelization of a method (proposed by Chu in [7]) to solve the Inverse Additive Singular Value Problem (IASVP). The IASVP is a problem whose solution requires a high computational cost, both in time and in memory. For example, the complexity of Chu’s method is O(n) in time and O(n) in memory. Using parallel computing, the time needed to solve the problem has been sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.03.003